Effects of denaturants on amide proton exchange rates: a test for structure in protein fragments and folding intermediates.

نویسندگان

  • D Loftus
  • G O Gbenle
  • P S Kim
  • R L Baldwin
چکیده

A method for detecting structure in marginally stable forms of a protein is described. The principle is to measure amide proton exchange rates in the absence and presence of varying concentrations of a denaturant. Unfolding of structure by the denaturant is reflected by an acceleration of amide proton exchange rates, after correction for the effects of the denaturant on the intrinsic rate of exchange. This exchange-rate test for structure makes no assumptions about the rate of exchange in the unfolded state. The effects of 0-8 M urea and 0-6 M guanidinium chloride (GdmCl) on acid- and base-catalyzed exchange from model compounds have been calibrated. GdmCl does not appear to be well-suited for use in the exchange-rate test; model compound studies show that the effects of GdmCl on intrinsic exchange rates are complicated. In contrast, the effects of urea are a more uniform function of denaturant concentration. Urea increases acid-catalyzed, and decreases base-catalyzed, rates in model compounds. The exchange-rate test is used here to study structure formation in the S-protein (residues 21-124 of ribonuclease A). In conditions where an equilibrium folding intermediate of S-protein (I3) is known to be populated (pH 1.7, 0 degree C), the exchange-rate test for structure is positive. At higher temperatures (greater than 32 degrees C) I3 is unfolded, but circular dichroism data suggest that residual structure remains [Labhardt, A. M. (1982) J. Mol. Biol. 157, 357-371].(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the protein-folding mechanism using denaturant and temperature effects on rate constants.

Protein folding has been extensively studied, but many questions remain regarding the mechanism. Characterizing early unstable intermediates and the high-free-energy transition state (TS) will help answer some of these. Here, we use effects of denaturants (urea, guanidinium chloride) and temperature on folding and unfolding rate constants and the overall equilibrium constant as probes of surfac...

متن کامل

Hydrogen exchange in BPTI variants that do not share a common disulfide bond.

Bovine pancreatic trypsin inhibitor (BPTI) is stabilized by 3 disulfide bonds, between cysteines 30-51, 5-55, and 14-38. To better understand the influence of disulfide bonds on local protein structure and dynamics, we have measured amide proton exchange rates in 2 folded variants of BPTI, [5-55]Ala and [30-51; 14-38]V5A55, which share no common disulfide bonds. These proteins resemble disulfid...

متن کامل

Structural Characteristics of Stable Folding Intermediates of Yeast Iso-1-Cytochrome-c

Cytochrome-c (cyt-c) is an electron transport protein, and it is present throughout the evolution. More than 280 sequences have been reported in the protein sequence database (www.uniprot.org). Though sequentially diverse, cyt-c has essentially retained its tertiary structure or fold. Thus a vast data set of varied sequences with retention of similar structure and fun...

متن کامل

Computational analysis of unfolding and folding pathways of proteins from amide proton exchange

The exchange rate of amide proton is dependent on primary sequence of amino acids, pH and temperature. A novel computational program has been developed to predict the exchange rates of amide protons in a protein and their relationship with unfolding and folding has been analyzed. The structure -function relationship of proteins can be well probed at atomic level resolution using Hydrogen deuter...

متن کامل

Influence of charge on the rate of amide proton exchange.

Nearest-neighbor inductive effects are known to influence amide proton exchange. Here we show that longrange electrostatic interactions also have a significant effect on the rate of amide proton exchange. We have measured the effects of salt (NaC1) on the exchange rates of the neutral polypeptide poly(DL-alanine) (PDLA) and of the positively charged polymer poly(DL-lysine) (PDLL). Our results s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 25 6  شماره 

صفحات  -

تاریخ انتشار 1986